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The Zeno problem of quantum mechanical measurement theory is revisited. A funda-
mental underlying domain issue is clarified. An alternative formulation for the Zeno
problem is given. A new operator-theoretic characterization of reversibility in terms
of domain regularity preservation is announced. From these considerations one arrives
at a new perspective in which von Neumann’s Projection theory and the later Effects
theory of Ludwig are seen within an enlarged theory of Measurors and Preparors. It
is a Schrödinger picture in which one must be able to account for all wave functions
upon which the Hamiltonian can act before one is entitled to draw conclusions about
the evolving probabilities.
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surement.

1. INTRODUCTION

Reversibility in quantum mechanics has assumed renewed importance with
the recent advent of the possibilities of quantum computing and more generally
the recent advances in quantum information theory and its applications. See for
example the book (Nielsen and Chuang, 2000), the proceedings (Antoniou et al.,
2003), and much recent literature. One particular issue has been how to control
or prevent quantum state decoherence, see e.g. Giulini et al. (1996) and Namiki
et al. (1997), among many others. One proposed way to accomplish that is to use
the ‘Zeno’ effect (Chiu et al., 1977; Misra and Sudarshan, 1977). See for example
the proceedings mentioned above for further related recent results and literature
citations.

This author was involved in the early formulation of the quantum Zeno
effect (Gustafson, 1974, 1975, 1983). However, we were prevented a fully rigorous
treatment because of some unresolved operator-theoretic questions. Recently this
author returned to these issues (Gustafson, 2003a,b). Beyond these, some new
clarity has been achieved. The first goal of this paper is to come up-to-date on
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these results, which have not heretofore been published in the scientific journal
venues. In particular, an important unbounded operator domain question central
to the Zeno theory is clarified.

The second goal of this paper is to present an alternative formulation of the
Zeno problem, in which more attention is given to the state preparation and the state
measuring operations. This approach utilizes new mathematical results (Gustafson,
2000) for operator product duals and allows one to remain in Schrödinger picture.
This we prefer, in keeping with the belief that the domains D(H ) of the Hamilto-
nians have something to say about the dynamics that one wishes to understand and
that if one wishes to avoid these technical considerations by going to the density
matrices picture, one has lost some information and also one has perhaps obscured
some important issues. The resulting perspective enlarges that of von Neumann’s
collapse postulate and Ludwig’s Effects theory.

The third goal of this paper is to publish a very interesting newly-found
operator-theoretic characterization of quantum mechanical reversibility in terms
of what will be called here domain regularity preservation. To be more specific, the
regularity is that of the totality of the domain D(T ) of the infinitesimal generator
T of a unitary group Ut or a contraction semigroup Zt . In particular, any unitary
quantum mechanical evolution Ut = eiHt must map D(H ) one to one onto itself at
every instant. This is a Schrödinger picture, and the result states that the evolution
must at all times be able to simultaneously account for all wave functions upon
which the Hamiltonian can act before one is entitled to draw conclusions about
the overall evolving probabilities.

Section 2 revisits the Zeno problem of quantum mechanical measurement
theory. By operator domain-theoretic considerations we clarify when a pro-
jected evolution will retain the unitarity property. The central issue here is the
denseness of a domain D(HP). Section 3 provides a Zeno alternative in which
von Neumann’s projections postulate and Ludwig’s effects postulate are su-
perseded by what we call here measuror and preparor postulates. Key to this
are new results for duals (AB)∗ of operator compositions. Section 4 presents a
new theorem which shows that the reversibility represented by a quantum me-
chanical evolution requires that Ut map its generator’s domain D(H ) one to
one onto itself. We call this domain regularity. Section 5 contains concluding
remarks.

2. ZENO REVISITED

Our attention was drawn to what became known as the Zeno Paradox by
an important early paper of Friedman (1972). In this paper a number if issues
concerning quantum mechanical measurement theory were investigated mathe-
matically. In particular, if P (t) is a contraction semigroup on the Hilbert space H,
E an orthogonal projection on H, the question of when s-limn→∞(EP(t/n)E)n
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exists was raised. This would constitute a type of “continuous” observation. For-
mally one would expect such a limit to be etEAE where A was the infinitesimal
generator of Pt . However, EAE need not in general have the properties of a gen-
erator. Note also that the particular instance when P (t) is a unitary evolution
U (t) is of major importance and central to a number of quantum measurement
issues.

In Friedman (1972) some partial were obtained results via two mathemati-
cal approaches: Lie–Trotter product formulas, and quadratic (sesquilinear) forms.
However, the main questions remained unanswered. We also did not succeed to an-
swer them (Gustafson, 1974, 1975). When Misra and Sudarshan (1977) published
their famous Zeno paper, they also did not answer the underlying fundamental
operator-theoretic questions. Instead they abandoned the Schrödinger picture and
went to the density matrix picture, where many operator domain questions can
be avoided. However, even there it was necessary to assume that the two opera-
tor limits s-limn→∞ ρn(t) and s-limn→∞ Tn(t) exist, where ρn(t) = Tn(t)ρ0T

∗
n (t),

where Tn(t) = (EU (t/n)E)n.
We do not wish to give all Zeno history and related mathematical results here.

See the cited references. We may mention in particular (Home and Whitaker, 1997;
Misra and Antoniou, 2003) but there are many others. It may be asserted here that
full mathematical rigor has still not been achieved for many of the important
issues. However, the formal physics theory has nonetheless gone ahead, a not
unusual situation when one is dealing with quantum measurement theory. A very
important experimental result which gave new impetus to Zeno theory was Itano
et al. (1990).

The following was known early. Let U (t) be an arbitrary unitary evolution
with self adjoint infinitesimal generator H and let P be an arbitrary self adjoint
bounded projection onto closed subspace M in Hilbert space H. Let D(T ) denote
the domain of an operator T in H, and R(T ) its range. We recall that PUt = UtP

iff M is a reducing subspace for Ut , and more generally PUtP = UtP iff M is an
invariant subspace for Ut . More general yet, we have

Lemma 2.1. (Gustafson, 1974, 1975, 1983; Sinha, 1972) The projected evolution
Zt = PUtP is a semigroup for all t � 0 iff M is a proper subspace without
regeneration for Ut , i.e., PUsP

⊥UtP = 0 for all t, s � 0.

We remark that when M is a reducing subspace then Zt is a unitary group,
when M is an invariant subspace then Zt is a semigroup of partial isometries,
and if M fails to meet the requirement of Lemma 2.1, the Zt loses the semigroup
property entirely.

The possibility of retaining a unitary, hence reversible, evolution on so called
Zeno subspaces has been investigated in a number of recent books/papers (Facchi
et al., 2000, 2001; Namiki et al., 1997; Tasaki et al., 2004) among others. For a
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better understanding of what is involved in such formulations, we wish to take
note of certain unbounded operator-theoretic considerations. The following was
clear early.

Lemma 2.2. (Gustafson, 1974, 1975) Assume D(HP) is dense. Then PHP is
symmetric in H, and PHP is selfadjoint if PH is closed in H.

Proof: Since D(HP) ≡ D(PHP) is dense, (HP)∗ and (PHP)∗ exist and (PHP)∗ =
(HP)∗P ⊃ (PH)P = PHP so PHP is symmetric. If PH is closed, then PH =
(PH)∗∗ = (HP)∗, so one obtains equality in the previous sentence. �

Before looking more closely at the fundamental underlying issue of D(HP)
dense, we wish at this point to recall a few operator-theoretic facts which we will
use in the remainder of this paper. For more details see the books (Kato, 1980; Riesz
and Sz-Nagy, 1955; Weidmann, 1980) among others. In particular, the notion of
(closed) invariant subspace M for an unbounded operator T is better thought of in
the more general context as a decomposition of T by a direct sum H = M ⊕ N of
a pair of subspaces with the requirements that the projection P on M map D(T )
into D(T ), T maps M into M , T maps N into N . Here P is the (generally oblique)
projection of M along N . Such decomposition of T is equivalent to T commuting
with P : PT ⊂ TP. Then TP = PTP = PT on D(T ). When T is a selfadjoint
operator H and P an orthogonal projection and Ut = eiHt , then when one says
that M reduces H one is saying all of the following: PH ⊂ HP, P : D(H ) into
D(H ), (H − zI )−1P = P (H − zI )−1 for all z with Imz 
= 0, PE(s) = E(s)P for
all real s and all spectral family projectors of H , and PUt = UtP for all real
t . Our point-of-view is that such a simplified situation is not that of the Zeno
issues.

A second set of facts to remember is that T ∗ exists iff D(T ) is dense, that
D(T ∗) need not be dense, but D(T ∗) is dense iff T is closable, and then its closure
satisfies T = T ∗∗. For any two densely defined operators A and B and if AB is
densely defined, then (AB)∗ ⊃ B∗A∗, with equality if A ∈ B(H). Other conditions
for equality will be described later. We also will use other unbounded operator
theory, such as the associativity T1(T2T3) = (T1T2)T3, without comment.

We may now sharpen Lemma 2.2 to further clarify the situation.

Theorem 2.1. D(HP) is dense iff PH is closable. Then (HP)∗ is defined
and (HP)∗ = PH ⊃ PH has domain at least as large as D(H ). Thus generally
(PHP)∗ = PHP whenever PH is closable. Furthermore the polar factors satisfy
|PH| = (HP2H )1/2 and |HP| ⊃ (PH2P )1/2.

Proof: Because PH is densely defined, its adjoint exists and is (PH)∗ = HP.
This operator is densely defined iff PH is a closable operator. Then HP is a closed
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densely defined operator and (HP)∗ = (PH)∗∗ = PH ⊃ PH. To obtain the polar
factors we form (PH)∗PH = HP2H and (HP)∗HP = PHHP ⊃ PH2P . �

We mention that Theorem 2.1 holds for arbitrary selfadjoint operator H and
arbitrary orthogonal projection P . Therefore one cannot expect to get much more
from it.

The key assumption that HP be densely defined is made throughout the
recent treatment (Exner and Ichinose, 2003) of quantum Zeno dynamics. Their
approach of quadratic forms follows that of Friedman (1972) and one is concerned
with the form ||H 1/2Pu||2 with form domain D(H 1/2P ). The operator HP :=
(H 1/2P )∗(H 1/2P ) is associated with this form. It is noted there that HP may not
be densely defined but that then it will be a selfadjoint operator in some closed
subspace of H. From our analysis here we would like to defer slightly, or at
least point out some ambiguity in such a conclusion. When H 1/2P is not densely
defined in H, one cannot even speak of an operator (H 1/2P )∗(H 1/2P ). Of course
one can then reduce one’s considerations to the smaller Hilbert space M . But if
H 1/2P was not densely defined in H, then H 1/2 will not be densely defined in M

either. Moreover, whatever its domain there, the range R(H 1/2|M ) will generally
fall at least partially outside of M .

The same reservation applies to the analysis of Facchi and Pascazio (2003)
The formulation there combines continuous measurement with a coupling limit
to force the system to evolve in a set of orthogonal subspaces of the parent Hilbert
space. These quantum Zeno subspaces are the eigenspaces of a Hamiltonian
which is supposed to represent the interaction between the evolving quantum
dynamical system and the measurement apparatus. The use of a superselection
rule and an adiabatic theorem are assumed to determine “the subspaces that
the apparatus is able to distinguish.” Thus the physical description is now that
of a dynamical evolution allowing changing Zeno subspaces. However, from
our point of view, since the modeling and analysis is carried out in the density
matrix formulation, its underlying rigorous validity, e.g., the denseness of the
domains of the effective Hamiltonians in the individual Zeno subspace evolutions,
has not been considered. A similar comment applies to the von Neumann
subalgebras Zeno formulation (Schmidt, 2002), especially if one does not want
the measuring projection E to have to be within the Hamiltonian’s functional
calculus.

A number of conditions are known which can render PH closable, hence
D(HP) dense. For example, since PH is densely defined, it is sufficient that
its numerical range W (PH), the set of all inner product values 〈PHx, x〉
over all x in D(H ) with ||x|| = 1, not be the whole complex plane, e.g.
see Gustafson and Rao (1997). However, closability issues can be both delicate and
stubborn.
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3. A ZENO ALTERNATIVE

From entirely different motivations, this author obtained the following results
for the general question of when (AB)∗ = B∗A∗ for (generally) unbounded densely
defined operators A and B in a Hilbert space H.

Lemma 3.1. Gustafson (2000) Let A and B be arbitrary densely defined op-
erators and suppose D(AB) is dense, R(B) ⊃ D(A), D(B∗) ⊃ R(A∗), and B is
1-1. Then (AB)∗ = B∗A∗. In particular when A and B are selfadjoint, then the
conditions are D(AB) dense, R(B) ⊃ D(A), D(B) ⊃ R(A).

From these considerations one obtains the following.

Theorem 3.1. (Gustafson, 2003a,b) Let A be a “continual measurement observ-
able” A = A∗ bounded, R(A) ⊃ D(H ), D(HA) dense. Then AHA is selfadjoint
and the exponentiation eiAHAt is a unitary evolution.

Theorem 3.2. (Gustafson, 2003a,b) Let A,B,C be densely defined operators in
a Hilbert space H. Suppose the domains D(BC) and D(ABC) are dense, ranges
R(BC) ⊃ D(A), R(C) = D(B), domains D((BC)∗) ⊃ R(A∗), D(C∗) ⊃ R(B∗),
and C and BC are 1-1. Then (ABC)∗ = C∗B∗A∗.

Corollary 3.1. (Gustafson, 2003a,b) Let A and H be general selfadjoint oper-
ators and suppose D(HA) and D(AHA) are dense, R(HA) ⊃ D(A), R(A) ⊃
D(H ), D((HA)∗) ⊃ R(A), D(A) ⊃ R(H ). Then AHA is selfadjoint and eiAHAt

is a unitary evolution.

A few remarks here. First, the old Fredholm theory always gave (AB)∗ =
B∗A∗ when A and B were densely defined (generally unbounded) Fredholm
operators. Some slightly more general results also held, see Gustafson (1969). But
when A is a projection P in the Zeno context, we do not believe that it is natural
to have to assume a Fredholm finite index condition for P .

From the above results we may now formulate a Zeno Alternative, the goal be-
ing decoherence suppression and reversibility by maintaining a unitary evolution,
but with more attention given to the state preparation and measuring operations.
The infinitesimal generator AHC is to be prepared by C and measured by A.
For example, if we focus attention on AHA one may think of allowing A to
be in the Effects class 0 � A � 1, e.g., see (Davies, 1976; Kraus, 1983), thereby
escaping the restriction to the von Neumann Projections hypothesis. However, the
formulation here is more general. For example, the condition R(A) ⊃ D(H ) may
be interpreted as requiring that the preparor A be able to prepare all envisioned
wave functions for the domain of the Hamiltonian H . In like manner the condition
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D(A) ⊃ R(H ) can be interpreted as meaning that A as measuror should be able to
measure all wave functions after they are operated on by H . When we take both
preparor and measuror to be the same operator A as in Corollary 3.1, it can be seen
that in fact one has required that R(H ) = D(A), an admittedly strict condition,
which may be relaxed by allowing different preparors and measurors.

One may regard this Zeno Alternative, which allows unitary evolutions to
continue during the processes of state preparation and measurement, as an enlarged
picture of the quantum mechanical measurement theory, according to

Projections

(von Neumann)
⊂ Effects

(Ludwig)
⊂ Measurors/Preparors

(Gustafson)
.

The earlier formulations are preserved within the larger formulation. The note-
worthy property of measurors and preparors is that they must have dense domains
and dense ranges in order to account for all possible physically meaningful proba-
bilities. As a result of this, there need not be any “wave function collapse” because
one has allowed “complete measurement.”

In (Gustafson, 2003a,b) this Zeno alternative is brought to bear on the
(Friedman, 1972) Counter model, in which P is implemented by multiplica-
tion by the characteristic function χ (E) where E represents a closed bounded
three-dimensional domain with smooth boundary ∂E . One of the difficulties of
Friedman’s model is that there are two different Hamiltonians posed, both called
H0. The first is the free space Laplacian � inL2(R3). the second is the Laplacian �

inL2(E) with Dirichlet boundary conditions tacitly assumed. The domains of these
two Hamiltonians are well-known but quite different. Moreover, we know rather
generally that exponentiations Ut commute with their infinitesimal generators, i.e.,
UtH0 ⊆ H0Ut . This means in particular that Ut maps D(H0) into D(H0). So as
argued in (Gustafson, 2003a,b), if one starts with a free space evolution e−it�ψ0

and one wants to ‘count it’ by projecting it to L2(E) ∩ D(�0) where �0 denotes
the Laplacian with Dirichlet (trace) boundary condition, thereafter the ‘counter
evolution’ eit�0Pψ0 becomes a L2(E) unitary wave packet which continues to
propagate within the counter while maintaining the property of always vanishing
on the counter boundary ∂E . Once you are in the counter, you keep evolving there
forever. However, if you had imposed any other kind of self-adjoint boundary
condition on the surface of the counter, after counting, that boundary condition
is also forever retained within the continuing counter evolution. This view differs
from that put forth in Facchi et al. (2001).

Similar domain-theoretic ambiguities may be found in the physical literature
of Zeno subspaces, Zeno control, Decoherence-free unitary evolutions, dynamical
decoupling, suppression of system-environment interaction, quantum-computing
maintenance of reversibility by other means, etc. This technology is difficult, both
in theory and experimental realization, and must go forward. However, the Zeno
Alternative we offer here attempts to explain operator-theoretically how to not
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collapse the wave packet in the measuring process, or how to keep re-preparing
the wave function to maintain reversibility. From the experimental point of view
a similar philosophy was expressed in Pascazio et al. (1993).

4. REVERSIBILITY AND REGULARITY

It is well known that the Heat equation semigroup greatly smoothes the initial
data. For example, see (Gustafson, 1999, pp. 128–131), solutions u(x, t) to the Heat
equation ut − uxx = 0, −∞ < x < ∞, t > 0, u(x, 0) = f (x), −∞ < x < ∞,
for any initial value f in any LP class, become C∞ immediately for t > 0.
And the Heat equation is quite irreversible, in the sense that the backward heat
equation is unstable. On the other hand, the reversibility of a quantum mechanical
Schrödinger evolution corresponds just to the unitarity of its semigroup eitH . The
following result grew out of such thoughts combined with the considerations about
domains elsewhere in this paper.

Theorem 4.1. (Reversibility ⇒ Regularity). A unitary group Ut necessarily
exactly preserves its infinitesimal generator’s domain D(H ). That is, Ut maps
D(H ) one to one onto itself, for all −∞ < t < ∞.

Proof: For every −∞ < t < ∞ the linear isometry ||Utx|| = ||x|| property and
the commutativity property UtH ⊂ HUt guarantee that Ut maps D(H ) one to one
into D(H ). Is it onto D(H )? Suppose not. Then for some t there exists an x in
D(H ) which is not in the image Ut (D(H )). Apply U−1

t to x. By the commutativity
property again, we know z = U−t x is in D(H ). But then Utz = x must have been
in D(H ). �

Let us briefly discuss some facets of this Theorem.
First, the result is quite evident and natural once one sees it. Therefore it

may exist elsewhere in the literature, but in a limited search, we did not find it.
It importantly distinguishes the special action of Ut on D(H ) from its one to one
onto action on the whole Hilbert space.

Second, one can prove it other ways. For example, just from the operator
state diagram theory (Gustafson, 1997) one knows immediately that the 7 pos-
sible operator-adjoint state combinations for densely defined closed operators in
a Hilbert space are reduced to two for Ut , namely, states I1 and III1, just by
the fact that Ut has a bounded inverse. Then the 1-1ness of U ∗

t places you in
combined state I1I1. However, this tells you nothing about the specific action of
Ut on D(H ). Still, rather than abandoning this alternate proof approach, we wish
to push it through for reasons that will become apparent below, and also because
we have not seen these considerations elsewhere.
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Lemma 4.1. Let T be a closed densely defined operator in a Hilbert space H
and let Ut = eitH be a unitary evolution there which commutes with T . Then Ut

remains unitary on the graph-norm Hilbert space HT .

Proof: HT is the Hilbert space D(T ) equipped with the inner product 〈x, y〉T =
〈x, y〉 + 〈T x, T y〉. By the commutativity UtT ⊆ T Ut we have the isometry prop-
erty retained,

||Utx||2T = ||Utx||2 + ||T Utx||2 = ||x||2 + ||UtT x||2 = ||x||2T
Also the adjoint U ∗

t considered in HT is the same as the original adjoint, using
again the commutativity,

〈Utx, y〉T = 〈Utx, y〉 + 〈UtT x, T y〉
= 〈x,U ∗

t y〉 + 〈T x, T U ∗
t y〉 = 〈x,U ∗

t y〉T
Thus U ∗

T = U−1
t in the original space carries over to HT . �

In particular, Lemma 4.1 provides an alternate proof of Theorem 4.1. Let T

be H . Then by the state diagram argument given above, Ut and U ∗
t are both onto

HT = D(H ).

Lemma 4.2. Under the conditions of Lemma 4.1, a contraction semigroup evo-
lution Zt = etA remains a contraction semigroup on HT .

Proof: As above. Note that the semigroup commutativity property ZtT ⊆ T Zt

is essential, as is its sub-property that Zt map D(T ) into D(T ). �

Now we can provide a partial converse to Theorem 4.1 in the sense of asking,
suppose a contraction semigroup Zt exhibits the regularity preservation property
that it map the domain D(A) of its infinitesimal generator one to one onto itself.
What ‘unitarity’ properties does Zt exhibit for all t ≥ 0?

Proposition 4.1. Let Zt = etA be a contraction semigroup on a Hilbert space H
such that Zt maps D(A) one to one onto D(A). Then Zt on HA can be extended
to a group Z−t = Z−1

t .

Proof: By Lemma 4.2 above with A = T , we know Zt remains a contrac-
tion semigroup on HA. Because Zt maps HA 1-1 onto itself, we know (e.g.,
see Gustafson, 1997), Z−1

t is bounded and also maps HA 1-1 onto itself. By
known results in semigroup theory (e.g., see Riesz and Sz-Nagy, 1955, p. 393, we
may extend Zt to a group by defining Z−t = Z−1

t ). �

We mention that Z∗
t remains the same in HA as it was in H, so that one

can relate the adjoint semigroups by (Z∗
t )−1 = (Z−1

t )∗, pursue further converse



1876 Gustafson

statements for the original Hilbert space H, etc., which we will not do here. One
reason we present these results here is in hopes that they be used elsewhere by those
working in Zeno theory. To that end we add a few more comments here. Note that
in Lemma 4.1 you cannot conclude that T remain a closed operator in HT unless
T maps D(T ) into itself; and then T becomes a bounded operator. It was because
we did not wish to make such assumptions that we did not publish (Gustafson,
1974, 1975). Note that the heat equation converts its infinitesimal generator’s do-
main W 2,2(−∞,∞) immediately into C∞ functions, so in a sense it is an extreme
opposite to Theorem 4.1. It would be interesting to know more about semigroup
behavior in-between Theorem 4.1 and Proposition 4.1. For example, we know a
semigroup Zt of isometries has a unitary group extension on a larger Hilbert space.

Third, elsewhere (Gustafson, 1997) this author has developed a somewhat
related principal of regularization, which postulates regularity increase in Nature
as a very extensive Second Law. A number of examples were given to show
that Nature generally prefers regularizing processes. Entropy increase sometimes
coincides with this regularity preference. Thus, Time-asymmetric physics develops
as Nature smoothes data. Coupled with such macroscopic regularization one often
finds a corresponding microscopic refinement of detail.

What Theorem 4.1 states within such a context is that in unitary quantum
mechanical evolutions, one cannot lose any of the totality of detail embodied in
the totality of wave functions ψ in D(H ). It is quite interesting to think about
how much ‘mixing around’ of D(H ) the evolution Ut can do. Perhaps one will
investigate such questions elsewhere, e.g., from the viewpoint of ergodic theory.
However, just by itself, Theorem 4.1 says that to have reversibility in quantum
mechanics, you cannot lose a single wave function from D(H ) as you proceed
forward in time. In other words, you must be able to account for all evolving
probabilities, future and past, all of the time.

This finding also gives renewed importance to the role of preparation of states
in quantum mechanics. The ensemble {ψ0} of experimental initial states which are
prepared to simulate a posteriori in an experiment what you could expect a priori
from all possibilities from D(H ), must be sufficiently extensive within D(H ) and
in such a way that their trajectories continue to predict properly during evolution.
Ideally, you need a dense subset from D(H ).

To emphasize the above discussion, which to us seems important, we may
state

Corollary 4.1. A quantum mechanical evolution Ut must and does continuously
and simultaneously account for all probabilities |ψ(t)|2 and all wave functions
ψ(t) in the domain of its Hamiltonian.

It is important to note that Theorem 4.1 is of wider interest, i.e., it will
apply to any unitary evolution Ut = eitH in any context. For example, even if
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one has “resorted” to the Heisenberg interaction picture and to unitary evolutions
ρ(t) = Utρ0U

∗
t , one knows from Theorem 4.1 that the underlying Hamiltonian

must have the domain regularity preservation property. Perhaps more interestingly,
effective “interaction Hamiltonians” such as those assumed in quantum dynamical
decoupling (Tasaki et al., 2004; Viola et al., 1999) must also enjoy and respect the
domain regularity preservation property. Our point of view is that in such situations,
this is a physical property that one should try to understand mathematically, in order
to obtain a deeper understanding of the physics. As is well-known, selfadjointness
is a powerful property and often depends on, and represents, the correct physical
boundary conditions.

5. CONCLUDING REMARKS

We have stayed within the Schrödinger description of quantum dynamics for
three reasons. First, that is where we began, when first looking at these issues
30 years ago. Second, in our opinion, that is where the dynamics takes place. The
difficulties of quantum measurement theory do not impugn in any way the va-
lidity of the Schrödinger partial differential equations which describe atomic and
molecular dynamics. Rather, the difficulties and paradoxes of quantum measure-
ment theory are self-induced, as are most paradoxes, by some defect in how we are
modeling the measurement problem. Putting it perhaps a bit too bluntly, we do not
understand well enough the microphysical nature of the physical entities we want
to measure. So we do the best we can, by speaking of particles, wave functions,
probabilities, expected values. Third, there is some very beautiful mathematical
operator theory which is unavoidably intrinsic to the physical descriptions within
which we are trying to work. The difficulties of this operator theory mathematics
seem to match and indicate the corresponding inadequacies in our understandings
of the physics.

Von Neumann’s original projection postulate had three advantages. First, he
wished to have a model within a Hilbert space context. Of course we know now
that aspects of quantum mechanics, such as improper wave functions over the
continuous spectrum, resonances, field theories, take us beyond the Hilbert space
context. But it is a good context. Second, modeling a measurement by projection
onto an eigenspace agreed very well with physical experiment. The spectral lines
of Hydrogen, Helium, and the other elements, as found by optical spectroscopy
in the experimental laboratories, agree brilliantly with those predicted by the
eigenfunctions of the Schrödinger partial differential equation. Of course, those
projections were within the Hamiltonian’s spectral calculus, and hence did not deal
at all with the actual process of measurement. Third, Hilbert space, e.g. the L2(Rn)
spaces, were a very natural way to accommodate the wave function probability
|ψ(t)|2 interpretations of Born. In this paper we have sharpened our understanding
of that feature.
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We have not attempted any wide review of quantum Zeno dynamics, quantum
theory of open systems, quantum computation and control of decoherence, quan-
tum statistical mechanics, others. We have purposely avoided all issues about how
our theory might help or conflict with other Zeno investigations based upon the
Heisenberg picture, open systems formulations, others. We would, however, like
to mention that we have looked at some of those formulations, and we are of the
opinion that usually they mask important underlying issues whose fundamental
understanding would require domain-theoretic explanation such as we have pre-
sented in this paper. There is a lot of future mathematical investigation needed to
make rigorous all of those interesting formulations. Finally, it should be clear that
our measuror/preparor observable theory is in its infancy, and that to be complete,
it will need to be extended to time-dependent measurors and preparors, and to
how they couple to the actual measurement and preparation processes, depending
on what one wishes to measure/prepare. In particular we want to stress that we
envision all of the considerations of this paper, the domain-theoretic results, the
Zeno Alternative, to also be applied to subspace evolutions that one wants to be
reversible. The measuror/preparor ansatz will then need to be tailored to each of
those situations.

ACKNOWLEDGMENTS

The author would like to express his appreciation of Professor Saverio
Pascazio, who he first met at the Solvay XXII Congress in Delphi, Greece, in
November 2001. Professor Saverio cornered the author, stating that he had heard
persistent rumors that the author had been one of the originators of the Zeno prob-
lem (true), and he pressed the author to publish the results and understandings
known at that time, not only for the history of the problem, but also to perhaps
clarify certain present issues. Moreover Professors Saverio and Scardicchio then
posted a preliminary version of Gustafson (2003a) to the Los Alamos archives.
That paper and the present one are the author’s attempt to come somewhat up to
date on these physical and mathematical issues which, in our opinion, are far from
resolved.

REFERENCES

Antoniou, I., Sadovnichy, V., and Walther, H. (Eds.). (2003). The Physics of Communication, World
Scientific, Singapore.

Chiu, C., Sudarshan, G., and Misra, B. (1977). Time evolution of unstable quantum states and a
resolution to Zeno’s paradox. Physical Review D 16, 520–529.

Davies, E. (1976). Quantum Theory of Open Systems, Academic Press, New York.
Exner, P. and Ichinose, T. (2003). Product formula related to quantum Zeno dynamics. Proceedings of

the XIV International Congress on Mathematical Physics, Lisbon, World Scientific (to appear).
See also arXiv:math-ph/0302060.



Reversibility and Regularity 1879

Facchi, P., Gorini, V., Marmo, G., Pascazio, S., and Sudarshan, G. (2000). Quantum Zeno dynamics.
Physics Letters A 274, 12–19.

Facchi, P., Pascazio, S., Scardicchio, A., and Schulman, L. (2001). Quantum dynamics yields ordinary
constraints. Physical Review A 65, 012108.

Facchi, P. and Pascazio, S. (2003). Quantum Zeno subspaces and dynamical superselection rules.
In Antoniou, I., Sadovnichy, V., and Walther, H. (Eds.), The Physics of Communication, World
Scientific, pp. 251–286.

Friedman, C. (1972). Semigroup product formulas, compressions, and continual observations in quan-
tum mechanics. Indiana University Mathematics Journal 21, 1001–1011.

Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I., and Zeh, H. (1996). Decoherence and the
Appearance of a Classical World in Quantum Theory, Springer, Berlin.

Gustafson, K. (1969). On projections of selfadjoint operators and operator product adjoints. Bulletin
American Mathematical Society 75, 739–741.

Gustafson, K. (1974). On the “Counter Problem” of quantum mechanics. Unpublished, pp. 14.
Gustafson, K. (1975). Some open operator theory problems in quantum mechanics. Rocky Mountain

Mathematics Consortium Summer School on C∗ Algebras, Bozeman, Montana. Unpublished
notes, pp. 7.

Gustafson, K. (1983). Irreversibility questions in chemistry, quantum-counting, and time-delay. In
Hinze, J. (Ed.), Energy Storage and Redistribution in Molecules, Plenum Press, pp. 516–526.

Gustafson, K. (1997). Operator spectral states. Computers Applications of Mathematics 34, 467–508.
Gustafson, K. (1999). Partial Differential Equations and Hilbert Space Methods, Dover Publications,

Mineola, N.Y.
Gustafson, K. (2000). A composition adjoint lemma. In Gesztesy, F., Holden, H., Jost, J., Paycha,
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